\(\int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx\) [808]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 217 \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=-\frac {a^{5/2} (3 i A+2 B) \sqrt {c} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}+\frac {a^2 (3 i A+2 B) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f} \]

[Out]

-a^(5/2)*(3*I*A+2*B)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))*c^(1/2)/f+1/2*a
^2*(3*I*A+2*B)*(a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))^(1/2)/f+1/6*a*(3*I*A+2*B)*(c-I*c*tan(f*x+e))^(1/2)*
(a+I*a*tan(f*x+e))^(3/2)/f+1/3*B*(c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(5/2)/f

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3669, 81, 52, 65, 223, 209} \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=-\frac {a^{5/2} \sqrt {c} (2 B+3 i A) \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}+\frac {a^2 (2 B+3 i A) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (2 B+3 i A) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f} \]

[In]

Int[(a + I*a*Tan[e + f*x])^(5/2)*(A + B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

-((a^(5/2)*((3*I)*A + 2*B)*Sqrt[c]*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f
*x]])])/f) + (a^2*((3*I)*A + 2*B)*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f) + (a*((3*I)*A +
 2*B)*(a + I*a*Tan[e + f*x])^(3/2)*Sqrt[c - I*c*Tan[e + f*x]])/(6*f) + (B*(a + I*a*Tan[e + f*x])^(5/2)*Sqrt[c
- I*c*Tan[e + f*x]])/(3*f)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3669

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int \frac {(a+i a x)^{3/2} (A+B x)}{\sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f}+\frac {(a (3 A-2 i B) c) \text {Subst}\left (\int \frac {(a+i a x)^{3/2}}{\sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{3 f} \\ & = \frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f}+\frac {\left (a^2 (3 A-2 i B) c\right ) \text {Subst}\left (\int \frac {\sqrt {a+i a x}}{\sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = \frac {a^2 (3 i A+2 B) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f}+\frac {\left (a^3 (3 A-2 i B) c\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = \frac {a^2 (3 i A+2 B) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f}-\frac {\left (a^2 (3 i A+2 B) c\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{f} \\ & = \frac {a^2 (3 i A+2 B) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f}-\frac {\left (a^2 (3 i A+2 B) c\right ) \text {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{f} \\ & = -\frac {a^{5/2} (3 i A+2 B) \sqrt {c} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}+\frac {a^2 (3 i A+2 B) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {a (3 i A+2 B) (a+i a \tan (e+f x))^{3/2} \sqrt {c-i c \tan (e+f x)}}{6 f}+\frac {B (a+i a \tan (e+f x))^{5/2} \sqrt {c-i c \tan (e+f x)}}{3 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.74 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.91 \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=-\frac {a^{5/2} c (i+\tan (e+f x)) \left (6 (3 A-2 i B) \arcsin \left (\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) \sqrt {a+i a \tan (e+f x)}+\sqrt {a} \sqrt {1-i \tan (e+f x)} (-i+\tan (e+f x)) \left (-12 i A-10 B+3 (A-2 i B) \tan (e+f x)+2 B \tan ^2(e+f x)\right )\right )}{6 f \sqrt {1-i \tan (e+f x)} \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

[In]

Integrate[(a + I*a*Tan[e + f*x])^(5/2)*(A + B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

-1/6*(a^(5/2)*c*(I + Tan[e + f*x])*(6*(3*A - (2*I)*B)*ArcSin[Sqrt[a + I*a*Tan[e + f*x]]/(Sqrt[2]*Sqrt[a])]*Sqr
t[a + I*a*Tan[e + f*x]] + Sqrt[a]*Sqrt[1 - I*Tan[e + f*x]]*(-I + Tan[e + f*x])*((-12*I)*A - 10*B + 3*(A - (2*I
)*B)*Tan[e + f*x] + 2*B*Tan[e + f*x]^2)))/(f*Sqrt[1 - I*Tan[e + f*x]]*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*
Tan[e + f*x]])

Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.31

method result size
derivativedivides \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, a^{2} \left (-6 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +6 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-2 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}+12 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+9 A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -3 A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+10 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{6 f \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}\) \(285\)
default \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, a^{2} \left (-6 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +6 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-2 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}+12 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+9 A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -3 A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+10 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{6 f \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}\) \(285\)
parts \(\frac {A \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, a^{2} \left (4 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}-\tan \left (f x +e \right ) \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}+3 a c \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right )\right )}{2 f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}-\frac {B \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, a^{2} \left (3 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -3 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+\tan \left (f x +e \right )^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}-5 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{3 f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}\) \(340\)

[In]

int((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(5/2)*(A+B*tan(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

1/6/f*(-c*(I*tan(f*x+e)-1))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)*a^2*(-6*I*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(
1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+6*I*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)-2*B*(a*c)^(
1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)^2+12*I*A*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)+9*A*ln((a*c*tan
(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c-3*A*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2
)*tan(f*x+e)+10*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2)/(a*c*(1+tan(f*x+e)^2))^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 547 vs. \(2 (165) = 330\).

Time = 0.28 (sec) , antiderivative size = 547, normalized size of antiderivative = 2.52 \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=-\frac {3 \, \sqrt {\frac {{\left (9 \, A^{2} - 12 i \, A B - 4 \, B^{2}\right )} a^{5} c}{f^{2}}} {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + \sqrt {\frac {{\left (9 \, A^{2} - 12 i \, A B - 4 \, B^{2}\right )} a^{5} c}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (3 i \, A + 2 \, B\right )} a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (3 i \, A + 2 \, B\right )} a^{2}}\right ) - 3 \, \sqrt {\frac {{\left (9 \, A^{2} - 12 i \, A B - 4 \, B^{2}\right )} a^{5} c}{f^{2}}} {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {{\left (9 \, A^{2} - 12 i \, A B - 4 \, B^{2}\right )} a^{5} c}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (3 i \, A + 2 \, B\right )} a^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (3 i \, A + 2 \, B\right )} a^{2}}\right ) + 4 \, {\left (3 \, {\left (-5 i \, A - 6 \, B\right )} a^{2} e^{\left (5 i \, f x + 5 i \, e\right )} + 8 \, {\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (3 i \, f x + 3 i \, e\right )} + 3 \, {\left (-3 i \, A - 2 \, B\right )} a^{2} e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{12 \, {\left (f e^{\left (4 i \, f x + 4 i \, e\right )} + 2 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \]

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(5/2)*(A+B*tan(f*x+e)),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt((9*A^2 - 12*I*A*B - 4*B^2)*a^5*c/f^2)*(f*e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 2*I*e) + f)*log(
-4*(2*((-3*I*A - 2*B)*a^2*e^(3*I*f*x + 3*I*e) + (-3*I*A - 2*B)*a^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e
) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) + sqrt((9*A^2 - 12*I*A*B - 4*B^2)*a^5*c/f^2)*(f*e^(2*I*f*x + 2*I*e)
- f))/((3*I*A + 2*B)*a^2*e^(2*I*f*x + 2*I*e) + (3*I*A + 2*B)*a^2)) - 3*sqrt((9*A^2 - 12*I*A*B - 4*B^2)*a^5*c/f
^2)*(f*e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 2*I*e) + f)*log(-4*(2*((-3*I*A - 2*B)*a^2*e^(3*I*f*x + 3*I*e) +
(-3*I*A - 2*B)*a^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) - sqrt
((9*A^2 - 12*I*A*B - 4*B^2)*a^5*c/f^2)*(f*e^(2*I*f*x + 2*I*e) - f))/((3*I*A + 2*B)*a^2*e^(2*I*f*x + 2*I*e) + (
3*I*A + 2*B)*a^2)) + 4*(3*(-5*I*A - 6*B)*a^2*e^(5*I*f*x + 5*I*e) + 8*(-3*I*A - 2*B)*a^2*e^(3*I*f*x + 3*I*e) +
3*(-3*I*A - 2*B)*a^2*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))/(f*
e^(4*I*f*x + 4*I*e) + 2*f*e^(2*I*f*x + 2*I*e) + f)

Sympy [F]

\[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=\int \left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {5}{2}} \sqrt {- i c \left (\tan {\left (e + f x \right )} + i\right )} \left (A + B \tan {\left (e + f x \right )}\right )\, dx \]

[In]

integrate((c-I*c*tan(f*x+e))**(1/2)*(a+I*a*tan(f*x+e))**(5/2)*(A+B*tan(f*x+e)),x)

[Out]

Integral((I*a*(tan(e + f*x) - I))**(5/2)*sqrt(-I*c*(tan(e + f*x) + I))*(A + B*tan(e + f*x)), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1087 vs. \(2 (165) = 330\).

Time = 0.58 (sec) , antiderivative size = 1087, normalized size of antiderivative = 5.01 \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(5/2)*(A+B*tan(f*x+e)),x, algorithm="maxima")

[Out]

6*(12*(5*A - 6*I*B)*a^2*cos(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 32*(3*A - 2*I*B)*a^2*cos(3/2*ar
ctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 12*(3*A - 2*I*B)*a^2*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
+ 2*e))) + 12*(5*I*A + 6*B)*a^2*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 32*(3*I*A + 2*B)*a^2*si
n(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 12*(3*I*A + 2*B)*a^2*sin(1/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e))) - 6*((3*A - 2*I*B)*a^2*cos(6*f*x + 6*e) + 3*(3*A - 2*I*B)*a^2*cos(4*f*x + 4*e) + 3*(3*A - 2*I
*B)*a^2*cos(2*f*x + 2*e) - (-3*I*A - 2*B)*a^2*sin(6*f*x + 6*e) - 3*(-3*I*A - 2*B)*a^2*sin(4*f*x + 4*e) - 3*(-3
*I*A - 2*B)*a^2*sin(2*f*x + 2*e) + (3*A - 2*I*B)*a^2)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*
e))), sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - 6*((3*A - 2*I*B)*a^2*cos(6*f*x + 6*e) + 3*(3
*A - 2*I*B)*a^2*cos(4*f*x + 4*e) + 3*(3*A - 2*I*B)*a^2*cos(2*f*x + 2*e) - (-3*I*A - 2*B)*a^2*sin(6*f*x + 6*e)
- 3*(-3*I*A - 2*B)*a^2*sin(4*f*x + 4*e) - 3*(-3*I*A - 2*B)*a^2*sin(2*f*x + 2*e) + (3*A - 2*I*B)*a^2)*arctan2(c
os(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1
) + 3*((-3*I*A - 2*B)*a^2*cos(6*f*x + 6*e) + 3*(-3*I*A - 2*B)*a^2*cos(4*f*x + 4*e) + 3*(-3*I*A - 2*B)*a^2*cos(
2*f*x + 2*e) + (3*A - 2*I*B)*a^2*sin(6*f*x + 6*e) + 3*(3*A - 2*I*B)*a^2*sin(4*f*x + 4*e) + 3*(3*A - 2*I*B)*a^2
*sin(2*f*x + 2*e) + (-3*I*A - 2*B)*a^2)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*a
rctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) +
3*((3*I*A + 2*B)*a^2*cos(6*f*x + 6*e) + 3*(3*I*A + 2*B)*a^2*cos(4*f*x + 4*e) + 3*(3*I*A + 2*B)*a^2*cos(2*f*x +
 2*e) - (3*A - 2*I*B)*a^2*sin(6*f*x + 6*e) - 3*(3*A - 2*I*B)*a^2*sin(4*f*x + 4*e) - 3*(3*A - 2*I*B)*a^2*sin(2*
f*x + 2*e) + (3*I*A + 2*B)*a^2)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1))*sqrt(a)*s
qrt(c)/(f*(-72*I*cos(6*f*x + 6*e) - 216*I*cos(4*f*x + 4*e) - 216*I*cos(2*f*x + 2*e) + 72*sin(6*f*x + 6*e) + 21
6*sin(4*f*x + 4*e) + 216*sin(2*f*x + 2*e) - 72*I))

Giac [F]

\[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=\int { {\left (B \tan \left (f x + e\right ) + A\right )} {\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {5}{2}} \sqrt {-i \, c \tan \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(5/2)*(A+B*tan(f*x+e)),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int (a+i a \tan (e+f x))^{5/2} (A+B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)} \, dx=\int \left (A+B\,\mathrm {tan}\left (e+f\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(5/2)*(c - c*tan(e + f*x)*1i)^(1/2),x)

[Out]

int((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(5/2)*(c - c*tan(e + f*x)*1i)^(1/2), x)